Higher moments of the Siegel Mean Value Theorem

The following is the main theorem about \(k\)th moments of the \(d\)-dimensional Seigel Mean Value theorem from [1].

Let \(f:(\mathbb{R}^{d})^{k} \rightarrow \mathbb{R}\) be a compactly supported continuous function. Then for \(k \in \{1,\dots,d-1\}\), we get that \[\begin{align} & \int_{SL_d(\mathbb{R})/SL_d(\mathbb{Z})}\sum_{(x_1,x_2,\dots,x_k) \in (g \mathbb{Z}^{d})^k}f(x_1,x_2,\dots,x_k) \\ = & f(0,0,\dots,0) + \sum_{m=1}^{{n}}\sum_{\substack{D \in M_{m \times k }(\mathbb{Q}) \\ \mathop{\mathrm{rank}}(D) = m \\ D \text{ is row reduced echelon}}} N(D)^{-d} \int_{x \in K_\mathbb{R}^{d \times m }} g(x D ) dx, \end{align}\] where \(N(D)\) is the index of the sublattice \(\{ C \in M_{1 \times m }(\mathbb{Z}) \ | \ C \cdot D \in M_{1 \times n}(\mathbb{Z})\}\) in \(M_{1 \times m}(\mathbb{Z})\).

Rogers’ mean value theorem

See this page.

References

1.
C. A. Rogers, Mean values over the space of lattices. Acta mathematica, 94 (1955) 249–287.

This page was updated on August 24, 2022.
Main Page