Rogers’ mean value theorem

This is Theorem 1 from [1].

Consider the lattice in \(\mathbb{R}^{d}\) given by \[\begin{align} \Lambda(\theta_1,\dots,\theta_{d-1})= \begin{bmatrix} \omega & & & & & \\ & \omega & & & & \\ & & \omega & & & \\ & & & \ddots & \\ \theta_1 & \theta_2 & \dots & \theta_{d-2} & \theta_{d-1} \omega^{d-1} \end{bmatrix} \mathbb{Z}^{d}. \end{align}\]

Then, we have that

\[\begin{equation} \int_{ \theta \in [0,1]^{d-1}} \sum_{x \in \Lambda(\theta)}f(x) = f(0) + \int_{\mathbb{R}^{d}} f(x) dx. \end{equation}\]

This is some analogue of horocycle equidistribution. Rogers’ used this theorem to prove the higher momemnts of SMT.

References

1.
C. A. Rogers, Mean values over the space of lattices. Acta mathematica, 94 (1955) 249–287.

This page was updated on August 23, 2022.
Main Page