Generically trivial torsors under algebraic group

I am attending a number theory seminar in the Ramanujan guest house at TIFR. The speaker is Federico Scavia. This is joint work with A. Bouthier and K. Česnavičius.

Let \(k\) be a field.

1. The Grothendieck-Serre conjecture (constant case)

(BCS 2025)

Let \(X\) be a smooth \(k\)-scheme , let \(G\) be a smooth \(k\)-group. Then every generically trivial \(G\)-torsors over \(X\) is Zariski (semi-)locally trivial.

This was asked Serre (1958) for \(k = \overline{k}\).

What is remaining is the case of \(k\) being imperfect and \(G/k\) is non-reductive.

It is enough to assume the following:

2.The difficulty: dèvissage

Assume \(G/k\) is smooth, \(X = \mathrm{Spec}R\), \((R/k)\) is geometric regular semi-local. If \(k\) is perfect, the main theorem reduces to the reductive case.

We have the short exact sequence \[\begin{equation} 1 \xrightarrow[]{} N \rightarrow G \rightarrow H \rightarrow 1 \end{equation}\]

Then we have \[\begin{equation} \begin{cases} \text{ Thm for $N$ } \\ E(\mathrm{Frac}R) = E(R) \\ \forall H-\text{torsion } E/R \end{cases} \implies \text{Thm for }G \end{equation}\]

\[\begin{equation} 1 \rightarrow \underbrace{G^{\circ}}_{\text{ smooth comm }} \rightarrow G \rightarrow G / G^{\circ} \rightarrow 1 \end{equation}\] Hence this reduces the problem to \(G^{\circ}\).

\[\begin{equation} 1 \rightarrow \underbrace{H}_{\text{ smooth affine connected}} \rightarrow G^{\infty} \rightarrow \underbrace{A}_{\text{ ab var }} \rightarrow 1 \end{equation}\] By (Chevalley), we can reduce to \(H\).

\[\begin{equation} 1 \rightarrow \underbrace{R_{u,k}(H)}_{\substack{\text{ split unipotent } \\ H^{1}(\text{ affine }, R_{u,k}(H)) = \{*\} }} \rightarrow H \rightarrow \underbrace{H/R_{u,t}(H)}_{\text{ reductive }} \rightarrow 1 \end{equation}\] This will finish the proof.

For arbitrary (imperfect) \(k\),

Proof of main theorem

Geometric method of Federov-Penin (Gobber-Quillen presentation lemmas) gives: \[\begin{align} & \forall R/k \text{ geom reg semilocal } \forall E \rightarrow \mathrm{Spec}R G-\text{torsor}, \\ & \exists \mathcal{E} \rightarrow \mathbb{P}^{1}_{R} \text{ and } Z \text{ does not embed in } \mathbb{A}^{1}_{R}, R-\text{finite}\\ & \text{such that } \mathcal{E}|_{t=0} \simeq E \text{ and } \mathcal{E}_{\mathbb{P}^{1}_{R} \setminus \mathbb{Z} } \text{ trivial } \end{align}\]

So main theorem reduces to showing that for all \(\mathcal{E} \rightarrow \mathbb{P}^{1}_{R} G\)-torsor, \[\begin{equation} \mathcal{E}_{\{t = \infty\}} \text{ trivial } \implies \mathcal{E}|_{\{t=0\}} \text{ trivial}. \end{equation}\]

(BCS 2025)

For \(G/k\) smooth, \(E \rightarrow \mathbb{P}_{k}^{1}\) \(G\)-torsion, the following are equivalent:

  1. \(E|_{t=\infty}\) trivial
  2. \(E|_{\mathbb{A}^{1}_{k}}\) trival
  3. \(E\) Zariski locally trivial

If \(G\) is quasi reductive, the above three are equivalent to

  1. \(\exists \lambda: \mathbb{G}_{m} \rightarrow G\), \(E \simeq \lambda_{*} O(1)\) and moreover \[\begin{align} H^{1}(\mathbb{P}^{1}_{k}, G ) & \simeq \mathrm{Hom}(\mathbb{G}_{m},G) / G(k) \\ \lambda_{k} O(1) & \leftarrow \lambda \end{align}\]

Proof idea: \(\mathbb{P}^{1}_{k} = \mathbb{A}^{2}_{k} \setminus \{0\}/ \mathbb{G}_{m} \rightarrow [\mathbb{A}^{2}/ \mathbb{G}_{m}]\). \[\begin{equation} H^{1}(\mathbb{P}^{1},G) \leftarrow H^{1}([\mathbb{A}^{2}/\mathbb{G}_{m}, G ]) \xrightarrow[]{} H^{1}(B \mathbb{G}_{m}, G). \end{equation}\]

At this point the talk got extremely technical and I gave up on taking notes.


This page was updated on February 2, 2026.
Main Page