I am attending a number theory seminar in the Ramanujan guest house at TIFR. The speaker is Federico Scavia. This is joint work with A. Bouthier and K. Česnavičius.
Let \(k\) be a field.
(BCS 2025)
Let \(X\) be a smooth \(k\)-scheme , let \(G\) be a smooth \(k\)-group. Then every generically trivial \(G\)-torsors over \(X\) is Zariski (semi-)locally trivial.
This was asked Serre (1958) for \(k = \overline{k}\).
What is remaining is the case of \(k\) being imperfect and \(G/k\) is non-reductive.
It is enough to assume the following:
Assume \(G/k\) is smooth, \(X = \mathrm{Spec}R\), \((R/k)\) is geometric regular semi-local. If \(k\) is perfect, the main theorem reduces to the reductive case.
We have the short exact sequence \[\begin{equation} 1 \xrightarrow[]{} N \rightarrow G \rightarrow H \rightarrow 1 \end{equation}\]
Then we have \[\begin{equation} \begin{cases} \text{ Thm for $N$ } \\ E(\mathrm{Frac}R) = E(R) \\ \forall H-\text{torsion } E/R \end{cases} \implies \text{Thm for }G \end{equation}\]
\[\begin{equation} 1 \rightarrow \underbrace{G^{\circ}}_{\text{ smooth comm }} \rightarrow G \rightarrow G / G^{\circ} \rightarrow 1 \end{equation}\] Hence this reduces the problem to \(G^{\circ}\).
\[\begin{equation} 1 \rightarrow \underbrace{H}_{\text{ smooth affine connected}} \rightarrow G^{\infty} \rightarrow \underbrace{A}_{\text{ ab var }} \rightarrow 1 \end{equation}\] By (Chevalley), we can reduce to \(H\).
\[\begin{equation} 1 \rightarrow \underbrace{R_{u,k}(H)}_{\substack{\text{ split unipotent } \\ H^{1}(\text{ affine }, R_{u,k}(H)) = \{*\} }} \rightarrow H \rightarrow \underbrace{H/R_{u,t}(H)}_{\text{ reductive }} \rightarrow 1 \end{equation}\] This will finish the proof.
For arbitrary (imperfect) \(k\),
Geometric method of Federov-Penin (Gobber-Quillen presentation lemmas) gives: \[\begin{align} & \forall R/k \text{ geom reg semilocal } \forall E \rightarrow \mathrm{Spec}R G-\text{torsor}, \\ & \exists \mathcal{E} \rightarrow \mathbb{P}^{1}_{R} \text{ and } Z \text{ does not embed in } \mathbb{A}^{1}_{R}, R-\text{finite}\\ & \text{such that } \mathcal{E}|_{t=0} \simeq E \text{ and } \mathcal{E}_{\mathbb{P}^{1}_{R} \setminus \mathbb{Z} } \text{ trivial } \end{align}\]
So main theorem reduces to showing that for all \(\mathcal{E} \rightarrow \mathbb{P}^{1}_{R} G\)-torsor, \[\begin{equation} \mathcal{E}_{\{t = \infty\}} \text{ trivial } \implies \mathcal{E}|_{\{t=0\}} \text{ trivial}. \end{equation}\]
(BCS 2025)
For \(G/k\) smooth, \(E \rightarrow \mathbb{P}_{k}^{1}\) \(G\)-torsion, the following are equivalent:
If \(G\) is quasi reductive, the above three are equivalent to
Proof idea: \(\mathbb{P}^{1}_{k} = \mathbb{A}^{2}_{k} \setminus \{0\}/ \mathbb{G}_{m} \rightarrow [\mathbb{A}^{2}/ \mathbb{G}_{m}]\). \[\begin{equation} H^{1}(\mathbb{P}^{1},G) \leftarrow H^{1}([\mathbb{A}^{2}/\mathbb{G}_{m}, G ]) \xrightarrow[]{} H^{1}(B \mathbb{G}_{m}, G). \end{equation}\]
At this point the talk got extremely technical and I gave up on taking notes.
This page was updated on February 2, 2026.
Main Page