I was very jet-lagged during this lecture so many details may be missing. Apologies!
To show strong spectral convergence of random \(d\)-regular graphs Let \(d=q+1\). We recall the results of Chen-Garza-Vargas-Tropp-Van Handel for the permutation model of random graphs.
Here we take the configuration model. Let \(G_{N} = (V_{N},E_{N})\) and let \(N = |V_{N}|\). We have the test function which takes \(\varphi: \mathbb{Z} \rightarrow \mathbb{C}\) even and supported in \([-L,L]\). Then \(\widehat{\varphi}\) is defined as in the bottom row of the picture (I could not copy).
We have \(\varphi(l)=\) coefficients of \(P\) in the Chebyshev basis of polynomials. We saw the existence of asymptotic expansions.
\[\begin{equation} \mathbb{E}_{N} \left( \mathrm{Tr}P(\tfrac{A_{N}}{\sqrt{q}})\right) = N \int_{-2}^{2} P(x)\underbrace{\, \mathrm{d}m(x)}_{\text{ Keston-McKay measure}} + \sum_{r=0}^{R} \tfrac{1}{N^{r}} \mu_{r}(P) + \frac{1}{N^{R+1}} (\text{Rest}_{R+1,N}(P)). \end{equation}\]
Here \(\mu_{r}\) is a linear form on \(\mathbb{C}[X]\).
C-GV-T-VH use the normalized trace \(\mathrm{tr}_{N} = \frac{1}{N} \mathrm{Tr}_{N}\). So \[\begin{equation} \mathbb{E}_{N} (\mathrm{tr}_{N}( P( \frac{A}{\sqrt{q}} ))) = \int_{-2}^{2} P(x)\, \mathrm{d}m(x) + \sum_{r=0}^{R} \frac{1}{N^{r+1}} \mu_{r}(P) + \frac{1}{N^{R+2}} \text{Rest}(P) \end{equation}\]
C-GV-T-VH
(R=0) The term \(\text{Rest}_{1,N} \in \mathcal{D}(\mathbb{R})\) and \(|\text{Rest}_{1,N}(P)| \leq C\) with \(\|P\|_{C^{g}([]-x_{*},x_{*})}\) suffices for strong convergence and the fact that \(\gamma_{0}\) can be a distribution supported in \([-2,2]\).
We approximate \(P \sim h \in \mathcal{C}_{c}^{\infty}(\mathbb{R})\), where \(h=0\) in \([-2-\varepsilon/2,2+\varepsilon/2]\) and \(h=1\) outside \([-2-\varepsilon,2+\varepsilon]\).
We have \[\begin{equation} \mathbb{E}_{N}( \mathrm{Tr}P (\frac{A}{\sqrt{q}})) = N \int_{ -2}^{2} P(x)\, \mathrm{d}m(x) + \delta_{0}(P) + \gamma_{0}(P) + \tfrac{1}{N}( O (|P|_{C^{\infty}([-x_{*},x_{*}])})). \end{equation}\]
We have \[\begin{equation} \mathbb{E}( \mathrm{Tr}( h(\frac{A}{\sqrt{q}}))) \leq \mathbb{E}( \mathrm{Tr}( h( \frac{A}{\sqrt{q}}))) = O( \frac{\varepsilon^{-g}}{N}) . \end{equation}\] and \(P^{m} * Q^{m}\) is of degree \(n+m+1\).
(Refined version) (\(R\) arbitrary)
The first three statements allow to reinforce the previous argument \(r \leq R_{c}\) and \(\mathbb{E}( \#\{ j , \frac{\lambda_{j}}{ \sqrt{ q}} \notin [-2 - \varepsilon, 2 + \varepsilon] \}) = O( \frac{\varepsilon^{-4r+9}}{N^{r+1}})\) .
The fourth statement allows us to choose the next \(R \leq r \leq \frac{q}{2}-1\) to get
Proof of assertions 3 and 4 on the support assuming 1 and 2 was known before.
Let \(\gamma \in \mathcal{D}(\mathbb{R})\) have compact support ($ ()$). Let \[\begin{equation} \rho= \overline{ \lim }_{L \xrightarrow[]{} + \infty} |\gamma (x^{L})|^{\frac{1}{L}}. \end{equation}\] Then \(\mathrm{supp}\gamma \subseteq [- \rho, \rho]\).
Let us write a proof of the fourth assertion. We take \(\gamma_{r}(x^{L})\) where \[\begin{equation} x^{L} = \sum_{l=0}^{L} \underbrace{\varphi_{L}(l)}_{\geq 0}^{{\text{ coefficients of the base $T_{l}$ }}} T_{l}(x), \end{equation}\] Where we have have \(T_{l}(t +\frac{1}{t}) = t^{l} + \frac{1}{t^{l}}\).
After this there are some more details that I failed to copy. Please see the video.
We know that \(\mathbb{E}_{N}(\mathrm{Tr}(P(A)))\) is in fact a rational polynomial in \(\frac{1}{N}\).
Detail: When \(B_{N}\) is the Hashimoto matrix, we have \[\begin{equation} \mathbb{E}_{N}(\mathrm{Tr}(B_{N}^{L})) = \frac{P_{L}(\frac{1}{N})}{ Q_{L}(\frac{1}{Nd})} \end{equation}\] where \(Q_{L}(X) = (1-X)(1-3X) \dots (1-(2L-1)X)\) with \(\deg P_{L} \leq L\). So \[\begin{equation} \mathrm{Tr}(\frac{A}{\sqrt{q}})^{L} = \sum_{j=1}^{N} (q^{i s_{j}} + q^{- i s_{j}})^{L} = \sum_{\substack{l=0 \\ l \equiv L (2)}}^{L} \binom{L}{\frac{l+L}{2}} ( \mathrm{Tr}B^{L} - \frac{N (d-2)}{2} \frac{(1 + (-1)^{k})}{ \sqrt{q^{l}}} ). \end{equation}\]
\[\begin{equation} \mathbb{E}_{N}( \mathrm{Tr}_{N} A^{L} ) = \frac{\tilde{P_{L}}(\frac{1}{N})}{ Q_{L}(\frac{1}{Nd})} \end{equation}\] For a \(h \in \mathbb{C}_{L}[X]\) we can write \[\begin{equation} \mathbb{E}_{N}( \mathrm{Tr}( h(\frac{A}{\sqrt{q}}))) = \frac{\varphi_{h}(\frac{1}{N})}{ Q_{L}(\frac{1}{N_{d}})} = \psi_{h}(\frac{1}{N}) \end{equation}\] By the Taylor expansion, it is \[\begin{equation} = \psi_{h}(0) + \sum_{r=1}^{R+1} \frac{1}{r! N^{r}} \psi_{h}^{(r)}(0) + \frac{1}{N^{R+2}} \int_{0}^{1} \frac{(1-t)^{R+1}}{(R+1)!}\, \mathrm{d}t \end{equation}\]
We need to bound the derivatives of \(\psi_{h}\) on an arbitrary small interval \([0,a]\).
For \(h \in \mathbb{C}_{L}[X]\) on \([0,a]\), one has \[\begin{equation} \|h^{(m)}\|_{\mathcal{C}^{0}([0,a])} \leq \frac{1}{(2m-1)!!} (\frac{ L^{2}}{a})^{m} \|h\|_{C^{0}([0,a])}. \end{equation}\]
The use of the inequality is explained in the picture below.
This page was updated on January 14, 2026.
Main Page