Nalini’s Lecture 2

These are notes taken while attending College de France lectures of Nalini.

Lecture 2

Continuing from the last lecture.

4. Sequence of measured metric spaces

Sequence of measured metric spaces satisfying the condition \(\mathop{\mathrm{RCD}}(K,N)\) or \(\mathop{\mathrm{CD}}(K,N)\). Here \(K \leq\) Ricci curvature is a lower bound and dimension \(\leq N\). The definitions are by Sturm, Lott-Villani and perhaps

One has

(Gigli, Mondino, Savaré)

If \((X_{n},d_{n},\underbrace{x_{n}}_{\text{ Base Point }},m_{n}) \rightarrow^{\text{ GH }} (X_{\infty},d_{\infty},x_{\infty},m_{\infty})\) then the Cheeger (Dirichlet) energies are convergent in the “sense of Mosco” (convergence in the weak sense and in strong sense).

If \(f_{n} \in L^{2}(m_{n}) \xrightarrow{\text{ Weak $L^2$ }}f_{\infty}\) then \(\lim \mathcal{E}_{n}(f_{n},f_{n})\geq \mathcal{E}_{\infty}(f_{\infty},f_{\infty})\),

and for all \(f \in L^{2}(m_{\infty})\), there is some \(f_{n} \in L^{2}(m_{n})\) strongly converging to \(f_{n} \in L^{2}(m_{n}) f\) and such that \(\mathcal{E}(f_{n},f_{n}) \rightarrow \mathcal{E}_{\infty}(f,f)\).

(GMS)

If \(X_{n},X_{\infty}\) are compact, then \[\begin{equation} \mathop{\mathrm{sp}}(\Delta_{X_{n}}) = \{ \lambda_{k}^{(n)} \rightarrow + \infty\}, n \in \mathbb{N} \cup \{\infty\}, \end{equation}\] or \(\lambda_{k}^{(n)} \rightarrow \lambda_{k}^{(\infty)}\) with convergence of eigenfunctions and spectral projectors.

\((X_{n},d_{n},x_{n},m_{n}) \xhookrightarrow{\text{ isometry $i_{n}$}} (X,d)\) for \(n \in \mathbb{N} \cup \{\infty\}\), then \(f_{n} \rightarrow f_{\infty}\) in \(L^{2}\) signifies that \(\int_{}^{} \varphi f_{n} \circ i_{n}^{-1} \mathop{\mathrm{\,d}}i_{n} \sharp m_{n} \rightarrow \int_{}^{} f_{\infty} \circ i_{n} \mathop{\mathrm{\,d}}_{n} \sharp m_{\infty}\) for all \(\varphi : X \rightarrow \mathbb{R}\) bounded and continuous. So \(f_{n} \rightarrow_{L^{2}} f_{\infty}\) is more than just convergence of \(L^{2}\) norms.

5. Homogenization

Bensonsson-Lions-Papanicoloan-Kasavan in ~78,79

Take an open bounded set \(\Omega \subseteq \mathbb{R}^{d}\). One has \[\begin{equation} L^{\mathcal{E}} = - \sum_{i,j}^{} \frac{\partial}{ \partial x_{i}} ( a_{ij}^{\varepsilon}(x) \frac{\partial}{\partial x_{j}}) + a_{0}^{ \varepsilon} \end{equation}\] One has Dirichlet conditions \[\begin{align} a_{ij}^{\varepsilon}(x) = & a_{ij}(\frac{x}{\varepsilon}) \\ a_{0}^{\varepsilon}(x) = & a_{0}(\frac{x}{\varepsilon}), \end{align}\] where \(a_{ij},a_{0}\) are \(\mathbb{Z}^{d}\)-periodic, bounded. \[\begin{equation} a_{ij}(x) = \sum_{}^{} c_{k}(a_{ij}) e^{i k x }, \end{equation}\] where

\[\begin{equation} c_{0}(a_{ij}) = m(a_{ij}) \text{ average of }{a_{ij}}. \end{equation}\]

One has

\(L^{\varepsilon}\) converges to \(L^{0}\) in the sense of the resolvent. Here \[\begin{equation} L^{0} = - \sum_{i,j}^{} \frac{\partial}{ \partial x_{i}} ( q_{ij} \frac{\partial}{\partial x_{j}}) + f \end{equation}\] with constant coefficients.

In 1 dimension, one has \(L^{\varepsilon} : F \rightarrow (a^{\varepsilon} F' )'\). This converges in the sense of the resolvent to \(L: f \rightarrow qf''\) where \(q = \tfrac{1}{m(\frac{1}{a})} \neq m(a)\).

Note that for any \(g\), \(L^{\varepsilon}(f_{\varepsilon}) = (a^{\varepsilon} f_{\varepsilon}')' = g\) with Dirichlet conditions if whenever \(f_{\varepsilon} \rightarrow f\) in the sense of \(L^{2}\) then \(f\) is a solution of \(q f'' = g\).

6. Discrete tori

Consider \(G_{N} = (\mathbb{Z}/N \mathbb{Z})^{2}\) or some other dimension. We consider the graph \(G_{N}= (V_{N},E_{N})\). This graph is a discretization of the torus.

One has the discrete Laplacian diven as \[\begin{equation} \Delta_{N}^{\mathop{\mathrm{disc}}}: L^{2}(V_{N}) \rightarrow L^{2}(V_{N}) \end{equation}\] given by \[\begin{equation} \Delta_{N}^{\mathop{\mathrm{disc}}} f (x) = \sum_{y \sim x} [f(y) - f(x)] = \underbrace{{\sum_{y \sim x}{f(x)}}_{\text{ Adjacency matrix }}} - 4 f(x). \end{equation}\]

We have eigen functions \[\begin{equation} e_{k}(x) = e^{2 \pi i k\cdot x}. \end{equation}\] Then \(x=(x_{1},x_{2}) \in ( \mathbb{Z}/N \mathbb{Z})^{2}\) , \(k = (k_{1},k_{2}) \in ( \mathbb{Z}/ N \mathbb{Z})^{2}\). One has \[\begin{equation} \Delta_{N} e_{k} =- 4 [ \sin^{2} ( \frac{\prod_{}^{} k_{1}}{ N }) + \sin^{2} ( \frac{ \prod_{}^{} k_{2}}{ N}) ]. \end{equation}\]

We consider the various limits.

1st limit

\(N^{2} \Delta_{N}\) has eigenvalues \(\Delta_{N} e_{k}\) converging to \[\begin{equation} 4 \pi^{2} k_{1}^{2}+ 4 \pi^{2} k_{2}^{2} \pi^2 k_2^2, \end{equation}\] with \(k_{1},k_{2}\) fixed. Note that these are the eigenvalues of the torus \(\mathbb{R}^{2}/\mathbb{Z}^{2}\).

There is a convergence in the sense of the resolvent generalized. If \(z \in \mathbb{C} \setminus \mathbb{R}\), then \[\begin{equation} \| i_{N}(z - \Delta_{N}^{\mathop{\mathrm{disc}}}) i_{N}^{*} - i_{\infty} (z - \Delta_{\mathbb{R}^{2}}/\mathbb{Z}^{2}) i_{\infty}^{2} \| \rightarrow_{L^{2}} 0 \end{equation}\]

Here \[\begin{equation} \mathcal{H}_{N} = l^{2}(V_{N}), \mathcal{H}_{\infty} = L^{2} (\mathbb{T}), i_{\infty} = \text{ identity } \end{equation}\] and \[\begin{equation} i_{N}: \mathcal{H}_{N} \hookrightarrow \mathcal{H}_{0}, \end{equation}\] which is \[\begin{equation} f \mapsto \text{ Piecewise-constant function that makes $f(\frac{i}{N},\frac{j}{N})$ on a small neighbourhood}. \end{equation}\]

2nd limit

Convergence of “empirical spectral measures”. We have \(|V_{N}| = N^{2}\) and \(I\) a fixed interval. Then \[\begin{equation} \frac{1}{N^{2}} \mathop{\mathrm{\sharp}}{ (k_{1},k_{2}) , 4 ( \sin^{2}( \frac{ \prod_{}^{} k_{1}}{N}) + \sin^{2} ( \frac{\prod k_{2}}{N})) \in I }. \end{equation}\] This is a Riemann sum approximating the integral \[\begin{equation} \int_{[0,1]^{2}}^{} \mathbb{I}_{I}(4 \sin^{2} ( \pi x_{1}) + 4 \sin^{2}(\pi x_{2}))\mathop{\mathrm{\,d}}(x_{1},x_{2}) = \langle \delta_{0}, P_{I}( \Delta_{\mathbb{Z}^{2}})\rangle_{l^{2}(\mathbb{Z}^{2}) \delta_{0}}, \end{equation}\] where \(\delta_{0}\) is the Dirac mass at \(0 \in \mathbb{Z}^{2}\).

This means that \((\mathbb{Z}/N \mathbb{Z})^{2}\) converges towards \(\mathbb{Z}^{2}\) in the sense of Benjamini-Schramm.

Convergence in the sense of Benjamini-Schramm

For discrete graphs

Let \(\mathbb{G}^{d}_{*} = \{ \text{ graphs of valency} \leq d, \text{ rooted }\}/ \sim\) where \(\sim\) is equivalence upto root-preserving isomorphisms. We equip this with a distance. \[\begin{equation} \mathop{\mathrm{dist}}((G,x),(G',x')) \leq \varepsilon \text{ if there is an isomorphism } B_{G}(x, \tfrac{1}{\varepsilon}) \sim B_{G'}( x', \frac{1}{\varepsilon}). \end{equation}\]

In fact \(\mathbb{G}^{d}_{*}\) is compact with respect to this metric. We denote \[\begin{equation} \mathcal{P}^{1}(\mathbb{G}^{d}_{*}) = \{ \text{Probability measures on }\mathbb{G}^{d}_{*}\}. \end{equation}\] We equip \(\mathcal{P}^{1}(\mathbb{G}^{d}_{*})\) with the weak topology.

For a finite graph \(G=(V,E)\) , \(\gamma_{G} \in \mathcal{P}^{1}(\mathbb{G}_{*}^{d})\) where \[\begin{equation} \gamma_{G} = \frac{1}{|V|} \sum_{x \in V} \delta_{(G,x)} \end{equation}\]

Let \(G_{N} = (V_{N},E_{N})\) be a sequence of finite graphs. We say that \(G_{N}\) converges in the sense of BS (= locally weak convergence) if \(\gamma_{G_{N}}\) has a weak limit \(\mathbb{P}_{\infty} \in \mathcal{P}^{1}(\mathbb{G}^{d}_{*})\).

\(\mathbb{P}_{\infty}\) is a probability measure on \(\mathbb{G}_{*}^{d}\). The limit object is a random rooted graph.

If \((G_{N}) \xrightarrow{BS} \mathbb{P}_{\infty}\). Let \((\lambda_{k}^{(N)})^{N}\) be the eigenvalues of the adjacency matrix \(A_{g}\) of \(G_{N}\), so they lie in \([-d,d]\). Then for \(f \in C^{\circ} ( \mathbb{R})\) one has \[\begin{equation} \frac{1}{|V_{N}|} \sum_{k=1}^{N} f(\lambda_{k}^{(N)}) \xrightarrow{N \rightarrow + \infty} {\underbrace{\mathbb{E}_{\infty}}_{\text{ with respect to the measure $\mathbb{P}_{\infty}$ }}}( \langle \delta_{0}, f(A_{g}) \delta_{0}\rangle_{l^{2}(g)}). \end{equation}\]

One has \(A_{g}\) is the adjacency matrix of the random graph \(g\) and \(\delta_{0}\) = Dirac mass at 0.

We get an analogous result when we replace the adjacency matrix with the Laplacian.

Note that this implies \[\begin{equation} \text{ for all } (H,y) \in \mathbb{G}_{*}^{d} \text{ for all } R \geq 0 \text{ fixed }, \frac{1}{ |V_{N}|} \mathop{\mathrm{\sharp}}\{ x \in V_{N} , B_{G_{N}(x,R) \sim B_{H}(y,R)}\} \end{equation}\] has a limit \(\mathbb{P}_{\infty}( B_{g}(0,R) \sim B_{H}(y,R))\).

Example of discrete torus

Suppose \(R\) is given and \(x \in (\frac{\mathbb{Z}}{ N \mathbb{Z}})^{2}\) for \(N \gg R\). Let \(B_{G_{N}} ( x, R) \sim B_{\mathbb{Z}^{2}} (0,R)\)
and \(\mathbb{P}_{\infty} = \delta_{(\mathbb{Z}^{2},0)}\), the limit graph is deterministic!

For the discrete graph \([[0,N-1]]^{2}\) (graph does no wrap around) , if \(x = (a,b) \in [[R,N-R]]\), then \(B_{G_{N}}(x,R) \sim B_{\mathbb{Z}^{2}}(0,R)\) but not if \(a\) or \(b\) is outside \([[R,N-R]]\). The limit is still \(\delta_{(\mathbb{Z}^{2},9)}\).

(of the theorem of BS)

The \(\lambda_{k}^{(N)} \in [-d,d]\). It suffices to test \(f(\lambda) = \lambda^{R}\) for an integer $ R $. Then \[\begin{equation} \frac{1}{|V_{N}|} \sum_{k \geq 1}^{|V_{N}|} (\lambda_{k}^{(N)})^{R} = \frac{1}{|V_{N}|} \mathop{\mathrm{Tr}}(A^{R}_{G_{N}}) = \frac{1}{|V_{N}|} \sum_{x \in V_{N}}^{} A^{R}_{G_{N}}(x,x) \end{equation}\] Take \(\varphi(G,x) = A_{G}^{R}(x,x)\). This is continuous on \(\mathbb{G}_{*}^{d}\) since the number of paths of length \(R\) from \(x\) to itself do not depend on anything but \(B_{G}(x,R)\). So the original equation converges to \[\begin{equation} \mathbb{E}_{\infty}( \varphi (f,0)) = \mathbb{E}_{\infty}( \langle \delta_{0}, A_{g}^{R} \delta_{0}\rangle) \end{equation}\]

Next time, we will see


This page was updated on November 28, 2025.
Main Page