\(\DeclareMathOperator{\coh}{coh}\)
\(\DeclareMathOperator{\rank}{rank}\) \(\DeclareMathOperator{\SL}{SL}\) \(\DeclareMathOperator{\M}{M}\) \(\DeclareMathOperator{\Stab}{Stab}\) \(\DeclareMathOperator{\SO}{SO}\) \(\DeclareMathOperator{\GSpin}{GSpin}\) \(\DeclareMathOperator{\GL}{GL}\) \(\DeclareMathOperator{\Symm}{Symm}\) \(\DeclareMathOperator{\char}{char}\) \(\DeclareMathOperator{\Ind}{Ind}\) \(\DeclareMathOperator{\gen}{gen}\) \(\DeclareMathOperator{\Sp}{Sp}\) \(\DeclareMathOperator{\card}{\#}\) \(\DeclareMathOperator{\level}{level}\) \(\DeclareMathOperator{\sig}{sig}\) \(\DeclareMathOperator{\diff}{\, d}\) \(\DeclareMathOperator{\vol}{vol}\) \(\DeclareMathOperator{\Tr}{tr}\)
These are some lecture notes takes during the Summer school on formulas of Siegel and Weil at Bielefeld. Feel free to let me know if there are some errors or typos.
Let \((L,Q)\) be an even lattice of rank \(n\). Assume \(2 \mid n\). Let \(Q: L \rightarrow \mathbb{Z}\) be a quadratic form. We define \((x,y) = Q(x+y)-Q(x)-Q(y)\). Let \(L\) be a positive definite lattice.
Let \(p\) be a prime. Let \(L_{p} = L \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\). Let \(L_{\infty} = L \otimes_\mathbb{Z} \mathbb{R}\). We say that \((L_{1},Q_{1})\) is the genus of \((L_{2},Q_{2})\) ig \[\begin{equation} (L_{1} )_{p}\simeq (L_{2})_{p} \text{ for each } p \text{ and for } \infty. \end{equation}\]
We denote by \(\gen(L)\) all the lattices which are in the genus of \(L\).
Therefore, we can assume that \(L_{1}\) and \(L_{2}\) are embedded in the same quadratic vector \(\mathbb{Q}\)-space. The set \(\gen(L)\) consists of finitely many isometry classes.
Two lattices in the same genus have the same discriminant. It is equal to \[\begin{equation} \Delta = (-1)^{n/2} \# L'/L, \end{equation}\] where \(L' =\{x \in L_{\mathbb{Q}} \mid (x,y) \in \mathbb{Z} \text{ for each } y \in L\}\).
One has that \(\Delta \sim 0,1\pmod{4}\). Also \[\begin{equation} \card L'/L = \det S, \text{ where } S = ((b_{i},b_{j}))_{i,j}. \end{equation}\]
We know that \(Q\) induces a \(\mathbb{Q}/\mathbb{Z}\)-valued quadratic form \(\overline{Q}\) on \(L'/L\). Then \((L'/L, \overline{Q})\) is a finite quadratic module.
One has \[\begin{equation} M \in \gen(L) \rightarrow (M'/M,\overline{Q}_{M}) \simeq (L'/L,\overline{Q}_{L}). \end{equation}\] Converse if \(M'/M \simeq L'/L\) and \(M_{\infty} = L_{\infty}\) then \(M \in \gen(L)\) (due to Nikulin).
Prove/read about these facts.
The theta series assiciated with \(L\) is \[\begin{equation} \Theta_{L}(\tau) = \sum_{x \in L}^{} e^{2 \pi i Q(x)\tau}, \tau \in \mathbb{H}. \end{equation}\] For \(\mu \in L'/L\), we define \[\begin{equation} \Theta_{\mu + L}(\tau) = \sum_{x \in \mu + L}^{} e^{2 \pi i Q(x) \tau}. \end{equation}\]
One has \[\Theta_{\Lambda}(\tau) \in \mathcal{M}_{n/2}(\Gamma_{0}(N), \chi_{\Delta}).\] Here \(\mathcal{M}_{n/2}\) is the space of modular forms, \(\chi_{\Delta}(x) = (\Delta/x)\) is the Legendre symbol and \[N = \level(L) = \min \{\alpha \in \mathbb{Z}_{\geq 0} \mid \alpha Q(x) \in \mathbb{Z} \text{ for each } x \in L'\}.\] We also have \[\begin{equation} \Theta_{\mu + L} \in \mathcal{M}_{n/2} (\Gamma(N)). \end{equation}\]
When \(L= E_{8}\), the even unimodular positive definite lattices of rank \(8\), one has \[\begin{equation} \Theta_{E_{8}} (\tau) \in \mathcal{M}_{4}(\Gamma(1)) = \mathbb{C} \cdot E_{4}. \end{equation}\] Using this one-dimensionality, we have \[\begin{equation} \Theta_{E_{8}} = E_{4}. \end{equation}\]
Using this, one can say that the representation numbers defined as \[\begin{equation} r_L(m) = \# \{x \in L \mid Q(x) = m\} , \end{equation}\] satisfy \[\begin{equation} r_{E_{8}}(m) = 240 \sigma_{3}(m). \end{equation}\]
In general, one can get exact formulas for the average representation numbers. \[\begin{equation} E_{k}(\tau) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma(1)}^{} (c \tau + d)^{-k} \text{ for }k > 2 \in \mathcal{M}_{k/2}(\Gamma(1)). \end{equation}\] This is equal to \[\begin{equation} 1 + \frac{2k}{ B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}. \end{equation}\]
(Siegel)
Assume \(L\) is positive definite unimodular of rank \(n\). Then \[\begin{equation} \sum_{M \in \gen(L)/\sim}^{} \frac{1}{\# O(M)} \Theta_{M}(\tau) = \Big( \sum_{M \in \gen(L)/\sim}^{} \frac{1}{\card O(M)}\Big) E_{n/2}(\tau). \end{equation}\]
Define \(h(\tau)\) to be the difference of lhs and rhs. Let \(k = n/2\). We want to show that \(h(\tau) = 0\). Observe that \(h \in \mathcal{M}_{n/2}(\Gamma(1))\) and in fact \(h \in \mathcal{S}_{n/2}(\Gamma(1))\) (the space of cusp forms).
Let \(p\) be a prime and let \(T_{p}\) be the \(p\)th Hecke operator on \(\Gamma_{n/2}(\Gamma(1))\). Here we know that \[\begin{equation} T_{p}E_{k} = \sigma_{k-1}(p) \cdot E_{k}. \end{equation}\]
We then show the following lemma.\[\begin{equation} T_{p}(\text{ LHS }) = \sigma_{k-1}(p) (\text{ LHS }). \end{equation}\]
If \(0 \neq f \in \mathcal{S}_{k}(\Gamma(1))\) and if \(T_{p}(f)= \lambda_{p}\cdot f\), then \[\begin{equation} |\lambda_{p}| \leq 2 p^{ (k-1)/2}. \end{equation}\]
Then, since we have \[\begin{equation} |\lambda_{p}| \leq p^{k/2} + p^{k/2-1} , \end{equation}\] and \(k = n/2 \geq 4\). So \[\begin{equation} \sigma_{k-1} = p^{k-1} + 1 > p^{\frac{n}{4} }+ p^{\frac{n}{4}-1} \implies h=0. \end{equation}\]
Read [1] for more.
The following is our setup. Let \((V,Q)\) be a quadratic space over \(\mathbb{Q}\). More precisely, let \(Q:V \rightarrow \mathbb{Q}\) be a quadratic form, non-degenerate. We write \[\begin{equation} \sig(Q) = (b^{+},b^{-}), b^{+} + b^{-} = l. \end{equation}\] We define \(O(V)\) to be the orthogonal group of \((V,Q)\). We have a quadratic character \(\chi_{V} : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \rightarrow \{ \pm 1\}\) , defined using the Hilbert symbol \(\chi_{V}(x) = (x,(-1)^{l/2} \det (V))_{\mathbb{Q}}\)
Let \(W = \mathbb{Q}^{2r}\) (row-vectors). Each \(x \in \mathbb{Q}^{2r}\) is written as \(x=(x,x')\). We define \[\begin{equation} \langle(x,x') , (y,y')\rangle = x (y ')^{\dagger} - x' y^{\dagger}. \end{equation}\] We write \((W, \langle\ , \ \rangle)\) to be the symplectic space of dimension \(2r\).
We denote \(G= \Sp(W) = \Sp_{r}\).
We have \(\Sp_{r}(\mathbb{Q})= \{ g \in
\GL_{2r}(\mathbb{Q}) \mid g^{\dagger} J g = J \}\)
where \[\begin{equation}
J =
\begin{bmatrix}
0 & -1_{r} \\
1_{r} & 0
\end{bmatrix}.
\end{equation}\] We denote \(P = \{
\Big(
\begin{smallmatrix}
* & * \\ 0_{r} & *
\end{smallmatrix}
\Big)\} \subseteq \Sp_{r}\) to be the matrices in a certain block
form. This is called the Siegel Parabolic subgroup.
Note that \[\begin{equation} P = M N \end{equation}\] where \[\begin{equation} M =\{m(\alpha) = \Big( \begin{smallmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{smallmatrix}\Big) \in \mid \alpha \in \GL_{r} \} \end{equation}\] and \[\begin{equation} N =\{n(\beta) = \Big( \begin{smallmatrix} 1_{r} & \beta \\ 0 & 1_{r} \end{smallmatrix}\Big) \in \mid \beta \in \Symm_{r} \} \end{equation}\]
We have \(K_{\infty} = U(r)\) which is \[\begin{equation} U(r) = \{\Big( \begin{smallmatrix} a & b \\ -b & a \end{smallmatrix}\Big) \mid z = a + i b, z z^{\dagger} = 1 \} \end{equation}\]
Let \(H \times G\) be a dual reductive pair. Let \(\mathbb{W} = V \otimes_{\mathbb{Q}} W\) be endowed with a symplectic form \[\begin{equation} \langle v \otimes w , v' \otimes w' \rangle = \langle v,v'\rangle \cdot \langle w , w'\rangle. \end{equation}\] Get \(G \times H \rightarrow \Sp(W , \langle \ , \ \rangle)\) mutual centralizers.The lectures of Maryna were about the bigger simplectic group \(\Sp(W, \langle \ , \ \rangle)\).
Let \(\omega = \omega_{\psi}\) be the Weil representation of \(G \times H\) associated with the additive character \(\psi: \mathbb{A}/\mathbb{Q} \rightarrow \mathbb{C}^{(1)}\).
\(\omega\) can be realized on the Schwartz-Bruhat functions \[\begin{equation} \mathcal{S}(V(\mathbb{A})^{r}) \simeq \mathcal{S}(V(\mathbb{A}_{f})^{r}) \otimes \mathcal{S}(V(\mathbb{R})^{r}). \end{equation}\]
With \(\varphi \in \mathcal{S}(V(\mathbb{A}))\), $$ is characterized by \[\begin{equation} (\omega(h) \varphi )(x) = \varphi(h^{-1} x ), \text{ for } h \in H(\mathbb{A}), \end{equation}\] \[\begin{equation} (\omega(m(\alpha))\varphi)(x) = \chi_{v}( \det (\alpha)) |\det \alpha|_{\mathbb{A}}^{l/2} \varphi(x \alpha), \end{equation}\] and \[\begin{equation} ( \omega(n(b)) \varphi)(x) = \psi( \Tr(b Q(x))) \cdot \varphi(x), \end{equation}\] where \(Q(x) = 1/2 (x_{i,x_{j}})_{i,j}\)
Here \(x = (x_{1},\dots,x_{r}) \in V^{r}(\mathbb{A})\) and \(h^{-1} x = (h^{-1 x_{1}, \dots, h^{-1} x_{r}})\). The most interesting action is \[\begin{equation} (\omega(J) \varphi)(x) = \gamma(V)^{r} \int_{ V(\mathbb{A})^{r}}^{} \varphi(y) \psi(-\Tr(x,y)) \diff y, \end{equation}\] where \(\gamma(V)\) is some eigth root of unity.
The about the Poisson summation formula here.
The average value with respect to \(H\) is \[\begin{equation} I(g,\varphi) = \int_{H(\mathbb{Q}) \setminus H(\mathbb{A})}^{} \theta(g,h,\varphi) \diff h, \end{equation}\] where \(\diff h\) is the unique Haar measure on \(H(\mathbb{A})\) such that \(\vol(H(\mathbb{Q}) \setminus H(\mathbb{A})) = 1\) . In general, we don’t know if this integral converges. However, we can use the criterion given by Weil.
(Weil convergence criterion)
The integral \(I(g, \varphi)\) converges for all \(\varphi \in \mathcal{S}(V(\mathbb{A})^{r})\) if 1. \(V\) is anisotropic over \(\mathbb{Q}\) and 2. The \(l\)-Witt rank of \(V\) is \(> r+ 1\).
The integral \(I(g,\varphi)\) defines an automorphic form.
What is this integral? Next time!
The character \(\psi: \mathbb{A}/\mathbb{Q} \rightarrow \mathbb{C}^{(1)}\) is a product of local characters. That is, \[\begin{equation} \psi = \prod_{p \leq \infty}^{} \psi_{p}. \end{equation}\] Here for \(p\) non-Archimidean, one has maps like \(\psi_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{C}^{(1)}\) that come from \(\mathbb{Q}_{p}/\mathbb{Z}_{p} \rightarrow \mathbb{Q}/\mathbb{Z}\). For \(p= \infty\), we have \[\begin{equation} \psi_{\infty}(x) = e^{2 \pi i x}. \end{equation}\]
The exercise is to figure out all these details.
We have \(G(\mathbb{A}) = P(\mathbb{A}) \cdot K\) where \(K = \prod_{p \leq \infty }^{} K_{p}\) where \[\begin{equation} \text{ for }p< \infty, K_{p} = \Sp_{r}(\mathbb{Z}_{p}) \text{ and } p = \infty, K_{p} = U(r) \subseteq \Sp_{r}(\mathbb{R}). \end{equation}\]
For \(g \in G(\mathbb{A})\), write \(q = n m(\alpha) k\) for \(n \in N\), \(m(\alpha) \in M\) and \(k \in K\). Put \(|a(g)|= |\det a|_{\mathbb{A}}\). Let \(g \mapsto |\alpha(g)|\) is norm on \(G(\mathbb{A})\) . For \(\varphi \in \mathcal{S}(V(\mathbb{A}))\), we put for \(s \in \mathbb{C}\) \[\begin{equation} \phi(g,s) = (\omega(g) \varphi)(0) |a(g)|^{s-s_{0}}, \end{equation}\] where \(s_{0} = l/2 - s_{r}, s_{r} = (r+1)/2\).
For \(\phi(n(b) n(\alpha) g , s) = \chi_{V}(\det(a)) |\det \alpha|^{s} \phi(g,s)\) . This implies \[\begin{equation} \phi(g,s) \in I_{r}(s_{0},\chi_{v}) = \Ind^{G(\mathbb{A})}_{P(\mathbb{A})} (\chi_{V} |\cdot |^{s}) \end{equation}\] This is to say, \(\phi\) is a section of the induced representation (I don’t understand what that means).
The map \(\lambda : \mathcal{S}(V(\mathbb{A})^{r}) \rightarrow I_{r}(s_{0}, \chi_{V})\) defined as \[\begin{equation} \varphi \mapsto \phi(s_{0}) = (\omega(g) \varphi)(0) \end{equation}\] is a \(G(\mathbb{A})\)-intertwining operator.
Use formulas of the Weil representation to show that \(\lambda\) is a \(G(\mathbb{A})\)-intertwining operator.
For any \(\phi(s) \in I_{r}(s,\chi_{V}), g \in G(\mathbb{A})\) the Eisenstein series is defined as \[\begin{equation} E(g,s,\Phi) = \sum_{\gamma \in P(\mathbb{Q}) \setminus G(\mathbb{Q})}^{} \phi(\gamma g,s) \end{equation}\] converges for \(\Re(s) > s_{r}\) if \(\phi\) is standard, i.e. \(\phi(k,s)\) is independendent of \(s\).
(Siegel, Weil, Kudla-Rallis)
Assume that Weil-convergence criteria holds. Let \(\gamma \in \mathcal{S}(V(\mathbb{A})^{r})\) and put \(\phi(s) = \lambda(\phi)(s) = \phi(g,s) \in I_{r}(s,\chi_{V})\).
To get the classical formula from yesterday, put \((V,Q)\) positive definite, \((b^{+},b^{-}) = (n,0)\), \(l=n\) even $L V $ is even unimodular. We put \(r=1\), \(\varphi = \varphi_{f} \cdot \varphi_{\infty}\) where \[\begin{equation} \varphi_{f} = \char(\hat{L}), \hat{L} = \prod_{p < \infty} L_{p} \subseteq V(\mathbb{A}_{f}), \end{equation}\] and \(\varphi_{\infty}(x) = e^{- \pi (x,x)} \text{ is a Gaussian }.\) Put \(K_{\infty} \simeq \SO(2) \subseteq \SL_{2}(\mathbb{R}) \simeq \Sp_{2}(\mathbb{R})\). We have for \(k \in \SO(2)\) a rotation by \(\theta\) \[\begin{equation} \omega(k) \varphi_{\infty} = e^{i \theta n /2 } \varphi_{\infty}. \end{equation}\] Then, we get \[\begin{equation} \nu^{-n/4} \theta( (g_{\tau},1,1,\dots),h,\varphi) = \theta_{hL} (\tau), \end{equation}\] where \(\tau \in \mathbb{H}\), \(g_{\tau} i = \tau\) and \(h \in H(\mathbb{A})\).
Look at indefinite quadratic spaces. Some motivation:
Here is the setup. Let \((V,Q)\) be
a quadratic space over \(\mathbb{Q}\)
of signature \((n,2)\). Let \(2 \mid n\). Let $L V $ be an even lattice.
Let \(\SO(V), \SO(L)\) be the Lie group
and discrete subgroup. Let \(H =
\GSpin(V) =\{g \in C^{0}(V)^{\times} \mid g Vg^{-1} = V \}\).
Then \[\begin{equation}
1 \rightarrow \mathbb{G}_{m} \rightarrow H \rightarrow \SO(V)
\rightarrow 1.
\end{equation}\]
We then look at \[\begin{equation}
D = \{z \in V_{\mathbb{C}} \mid (z,z) = 0, (z,\overline{z}) < 0\} /
\mathbb{C}^{\times}.
\end{equation}\] We write \(D = D^{+}
\cup D^{-} \subseteq P(V_{\mathbb{C}})\). Let \(K \subseteq H(\mathbb{A}_{f})\) be a
compact open. We denote \(X_{K}(\mathbb{C}) =
H(\mathbb{Q}) \setminus D \times H(\mathbb{A}_{f})/K\). The
complex space of a Shimura variety defined over \(\mathbb{Q}\). This is quasi-projective of
dimension \(n\).
If \(F/\mathbb{Q}\) is a real quadratic field. Let \(V= \{x \in \mathcal{M}_{2}(F) \mid x^{\dagger} = x'\}\). Write \(Q(x) = \det\) and \((V,Q)\) be a rational quadratic structure of signature \((2,2)\). Then \(D^{+} = \mathbb{H} \times \mathbb{H}\). Take \(H(\mathbb{Q}) = \{ g\in \GL_{2}(F) \mid \det g \in \mathbb{Q}^{\times}\}\). We put \(K = \Stab(\M_{2}(\mathcal{O}_{F}) \cap V) \subseteq H(\mathbb{A}_{f})\).
Consider \((V,Q)\) of signature \((n,2)\). We have an exact sequence. \[\begin{equation} 1 \rightarrow \mathbb{G}_{m} \rightarrow \GSpin( V ) \rightarrow \SO(V) \rightarrow 0. \end{equation}\]
We consider \[\begin{equation} X_{K}(\mathbb{C}) = H(\mathbb{Q}) \setminus D \times H(\mathbb{A}_{f}) / K, \end{equation}\] where \[\begin{equation} H(\mathbb{A}) = \cup_{j=1}^{\infty} H(\mathbb{Q}) H(\mathbb{R})^{+} h_{j} K, \end{equation}\] for some \(h_{j} \in H(\mathbb{A}_{f})\).
Then \(X_{K}(\mathbb{C}) = \cup_{j}^{\infty} X_{j}\) , and \(X_{j} = \Gamma_{j} \setminus D^{+}\) and \[\begin{equation} \Gamma_{j} = H(\mathbb{Q}) \cap (H(\mathbb{R})^{+} h_{j} K h_{j}^{-1}). \end{equation}\]
Let \(x=(x_{1},\dots,x_{t}) \in
V(\mathbb{Q})\)
where \(Q(x) = \tfrac{1}{2}(
(x_{i}),x_{j})_{ij} > 0\). We have \(V_{x} = x^{\perp} \subseteq V\). The
signature is assumed to be \((n-r,2)\).
Let \(H_{x}\) stabilizer of \(x\) in \(H\). This acts on \(D_{x} = \{z \in D \mid z \perp x\} \subseteq D\). For \(h \in H(\mathbb{A}_{f})\), one puts \(K_{h,x} = H_{x}(\mathbb{A}_{f}) \cap h K h^{-1}\). We set \(H_{x}(\mathbb{Q}) \setminus D_{x} \times H_{x}(\mathbb{A}_{f} / K_{h,x}) \rightarrow X_{K},\) where \([z,h_{1}] \rightarrow [z,h_{1}h]\) has codimension \(r\) (or maybe \(t\)? illegible). We get \(Z(x,h) \subset X_{k}\).
Take \(\Gamma \in \Symm_{r}(\mathbb{Q})\), \(\Gamma > 0\) and \(\varphi \in \mathcal{S}(V(\mathbb{A}_{f})^{r})\). If there exists \(x \in V^{r}\) such that \(Q(x) = \Gamma\), put \[\begin{equation} Z(\Gamma, \Phi) = \sum_{h \in H_{x}(\mathbb{A}_{f}) \setminus H(\mathbb{A}_{f}) / K }^{} \varphi (h^{1} x ) Z(x,h) \in Z^{r}(X_{K})_{\mathbb{C}}, \end{equation}\] otherwise put \(Z(\Gamma,\varphi) = 0\).
We can extend this definition to \(\Gamma \geq 0\) by \[\begin{equation} [Z(\Gamma,\varphi) ] \cdot [Z^{v}] \in H^{2r}(X_{K},\mathbb{C}), \end{equation}\] where \(r = \rank(\Gamma)\).
One has \[\theta_{r}^{\coh}(\tau , \varphi ) = \sum_{ \Gamma \geq 0}^{} [Z(T,\varphi)] q^{\Gamma}.\] Here \(\Gamma \in \Symm_{r}(\mathbb{Q}), \Gamma \geq 0\) We define \(q^{\Gamma} = e^{2 \pi i \Tr(\Gamma \tau)}\).
(Kudla-Millson, 1990-1997)
We have \(\theta_{r}^{\coh}(\tau, \varphi)\) is a holomorphic Siegel modular form of weight \(1+n/2\), of genus \(r\) (illegible) and values in \(H^{2r}(X_{K},\mathbb{C})\).
(Idea)
Use Kudla-Millson Schartz forms. \[\begin{equation} \varphi^{r}_{KM} (x,z) \in [S(V(\mathbb{R})^{r}) \otimes A^{2r}(D)], \end{equation}\] for \[\begin{equation} x \in V(\mathbb{R})^{r}, z \in D. \end{equation}\]
Here
Degree map \[\begin{align} \deg : H^{2r}(X_{K},\mathbb{C}) & \rightarrow \mathbb{C} \\ [\alpha] & \mapsto \int_{X_{K} (\mathbb{C})} \alpha \wedge \Omega^(n-r). \end{align}\] Here \(\Omega\) is the Kahler form. Also we have \[\begin{equation} X_{K}(\mathbb{C}) = H(\mathbb{Q}) \setminus D_{+} \times H(\mathbb{A_{f}} / K ) \end{equation}\]
From Kudla-Millson theorem, we have \[\begin{equation} \deg \theta_{r}^{\coh} (\tau , \varphi ) = \sum_{\Gamma \geq 0}^{} \deg [ Z (\Gamma, \Phi)] q^{\Gamma} \end{equation}\] is holomorphic SMF of weight \(k\) for \(\Sp_{r}\).
(Kudla)
Assume that Weil convergence criterion holds. Then \(\deg \theta_{r}^{\coh}(\tau, \varphi) = \vol(X_{K}(\mathbb{C}), \Omega^{r}) \cdot E(\tau, s , \lambda(\varphi \otimes \Phi_{k}) )\) .
This page was updated on October 3, 2025.
Main Page